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SUMMARY

1. Biodiversity, water quality and ecosystem processes in streams are known to be

influenced by the terrestrial landscape over a range of spatial and temporal scales. Lumped

attributes (i.e. per cent land use) are often used to characterise the condition of the

catchment; however, they are not spatially explicit and do not account for the

disproportionate influence of land located near the stream or connected by overland flow.

2. We compared seven landscape representation metrics to determine whether accounting

for the spatial proximity and hydrological effects of land use can be used to account for

additional variability in indicators of stream ecosystem health. The landscape metrics

included the following: a lumped metric, four inverse-distance-weighted (IDW) metrics

based on distance to the stream or survey site and two modified IDW metrics that also

accounted for the level of hydrologic activity (HA-IDW). Ecosystem health data were

obtained from the Ecological Health Monitoring Programme in Southeast Queensland,

Australia and included measures of fish, invertebrates, physicochemistry and nutrients

collected during two seasons over 4 years. Linear models were fitted to the stream indicators

and landscape metrics, by season, and compared using an information-theoretic approach.

3. Although no single metric was most suitable for modelling all stream indicators, lumped

metrics rarely performed as well as other metric types. Metrics based on proximity to the

stream (IDW and HA-IDW) were more suitable for modelling fish indicators, while the

HA-IDW metric based on proximity to the survey site generally outperformed others for

invertebrates, irrespective of season. There was consistent support for metrics based on

proximity to the survey site (IDW or HA-IDW) for all physicochemical indicators during

the dry season, while a HA-IDW metric based on proximity to the stream was suitable for

five of the six physicochemical indicators in the post-wet season. Only one nutrient

indicator was tested and results showed that catchment area had a significant effect on the

relationship between land use metrics and algal stable isotope ratios in both seasons.

4. Spatially explicit methods of landscape representation can clearly improve the

predictive ability of many empirical models currently used to study the relationship

between landscape, habitat and stream condition. A comparison of different metrics may

provide clues about causal pathways and mechanistic processes behind correlative

relationships and could be used to target restoration efforts strategically.
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Introduction

A central tenet of freshwater ecology links stream

processes and condition to the characteristics of the

surrounding landscape (Hynes, 1975), with aspects of

landscape condition known to influence in-stream

physical, chemical and biological patterns and pro-

cesses (Townsend, 1996; Allan, 2004). These relation-

ships were initially observed at the site or small

catchment scale. More recently, the advent of the

geographic information system (GIS) and the increase

in the amount of readily available remotely sensed

and GIS land use, land cover and altitude data have

allowed researchers to consider this relationship at

broader spatial scales (Turner, Gardner & O’Neill,

2001).

The ‘lumped’ approach is a popular method of

landscape representation and is based on summary

statistics such as the percentage, proportion or mean

of a landscape characteristic within a pre-designated

area. Frequently, this area represents the entire catch-

ment (Johnson et al., 1997) or land within a specific

distance of a feature (i.e. a buffer) such as a shoreline

(King et al., 2007), a stream (Strayer et al., 2003) or a

site (Comelo et al., 1996). The popularity of the

lumped method is probably due to the general

applicability of the approach: (i) the GIS data require-

ments are relatively small, (ii) the method can be

applied in the same way throughout different phys-

iographic, ecological or climatic regions, (iii) no a

priori decisions must be made about the importance of

a particular land use or parameter value and (iv) it is

not necessary to calibrate a model to generate the

metric.

Despite the operational advantages, the lumped

method is clearly an extreme oversimplification of

Hynes (1975) description of the linkages between a

stream and its valley. It is a non-spatial representation

of characteristics in the catchment and, as such, the

underlying assumption is that each portion of the

catchment has equal influence on in-stream conditions

(King et al., 2005). However, we know that the spatial

location of specific land use activities matters. For

example, Wang et al. (2001) studied catchments with

varying degrees of urbanisation and found that

impervious surfaces within 3.2 km of a survey site

had a stronger influence on fish assemblages than

impervious surfaces further away. We also know that

riparian stream buffers are commonly used to reduce

the negative impacts of timber harvests on in-stream

conditions (Wilkerson et al., 2006). Nevertheless, the

width of the buffer represents a subjective decision

about which portions of the catchment affect in-

stream condition. Given these issues, our goal is to

compare a suite of methods to determine whether the

effects of spatial proximity can be represented using

simple and generally applicable landscape represen-

tation methods.

The distance-weighted approach is a generally

applicable method of representing the landscape that

provides a spatially explicit alternative to lumped

metrics. Influence declines as a function of distance,

which is typically represented using Euclidean or flow

length distance from the source (each raster cell in a

catchment) to the destination (either the stream or the

catchment outlet). Note that when a catchment is

delineated for a survey site, the spatial location of the

survey site and the catchment outlet are equivalent.

The flow length represents the overland flow path,

which is based on the topography of the hillslope. The

decline in influence has been represented using an

inverse-distance function (Comelo et al., 1996; King

et al., 2004, 2005, 2007; DeLuca et al., 2008; Van Sickle

& Johnson, 2008) and an exponential function (John-

son et al., 2007; Van Sickle & Johnson, 2008), but any

function could be used. Distance-weighted metrics are

usually based on a single distance-decay function, but

two-component metrics have also been generated

(Johnson et al., 2007; Poor, McDonnell & Bolte, 2008;

Van Sickle & Johnson, 2008). In this case, the flow

length from each raster cell to the survey site is split

and a unique decay function is used for each part: one

for the distance travelled across the terrestrial land-

scape to the stream and another for the distance

travelled within the stream to the survey site.

Although the choice of distance-decay function can

also be viewed as an a priori decision, an optimisation

procedure can be used to estimate the parameters

(Van Sickle & Johnson, 2008) if there are concerns

about the weighting scheme.

Distance-weighted metrics have been shown to

improve stream and estuary data predictions for a

variety of data types including those on fish (King

et al., 2004; Van Sickle & Johnson, 2008), nutrients

(King et al., 2005; Poor et al., 2008), invertebrates (King

et al., 2005; Johnson et al., 2007), metals (Comelo et al.,

1996), invasive plants (Johnson et al., 2007; King et al.,

2007) and water birds (DeLuca et al., 2008). The type
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of distance-weighted metric that explains the most

variability in the data will probably vary depending

on which conditions and processes that the biological,

physical or chemical data are most strongly related to

(Strayer et al., 2003). For example, some evidence

suggests that inverse-distance-weighted (IDW) met-

rics based on distance to the stream explain more

variability in fish data compared to lumped metrics

(King et al., 2004; Van Sickle & Johnson, 2008); this

makes sense from an ecological perspective since fish

distribution generally reflects multi-scale environ-

mental conditions from the landscape, the riparian

zone and in-stream habitat (Gregory et al., 1991; Pusey

& Arthington, 2003; Allan, 2004). In contrast, an IDW

metric based on distance to the catchment outlet (also

known as the survey site or the ‘outlet’) may explain

more variability in invertebrate data (King et al.,

2005), since invertebrates generally have a shorter

lifespan and a more limited mobility than fish

(Rosenberg & Resh, 1993).

Land use near the stream or survey site clearly has

the potential to influence in-stream conditions strongly.

However, the relationship between the broader-scale

landscape and in-stream condition is complex, with

observable in-stream patterns resulting from multiple

spatially and temporally dependent processes (Wiens,

2002). As such, the potential influence of land use will

probably be affected by other processes. For example,

Stauffer, Goldstein & Newman (2000) found that

areas of low riparian cover were not associated with

poor scores for the fish Index of Biotic Integrity (IBI)

unless those areas also had a high runoff potential. A

number of methods, such as flow accumulation

thresholds (Hunsaker & Levine, 1995) and simple

hydrologic models (Burcher, 2009), have been pro-

posed to identify hydrologically active areas, but the

methods were not designed to be generally applica-

ble. For example, it may be difficult to choose the

appropriate threshold or to estimate a model param-

eter in hydrologically dissimilar regions. Despite

these issues, we believe that a generally applicable

metric that accounts for both hydrological effects and

proximity of land use to the stream has the potential

to explain additional variability in water quality and

biotic data.

The strength of the relationship between landscape

and stream condition is also likely to change

throughout the water year because of seasonal

differences in hydrological activity and indicator

category. In the wet season, the stream network

expands both longitudinally and laterally (Junk,

Bayley & Sparks, 1989; Malard, Tockner & Ward,

1999; Wigington, Moser & Lindeman, 2005), resulting

in a flushing effect as the flow paths facilitate the

movement of physical material, chemicals and nutri-

ents to and within the stream (Robertson et al., 1999;

Olivie-Lauquet et al., 2001). During dry periods, the

stream network contracts, resulting in reduced con-

nectivity and movement of material (Malard et al.,

1999). This seasonal expansion and contraction of the

stream network (Junk et al., 1989; Malard et al., 1999;

Wigington et al., 2005) may affect the relative influ-

ence of catchment land use on in-stream indicators

(Bolstad & Swank, 1997; Johnson et al., 1997; Pan

et al., 2004; Stedmon et al., 2006). In addition, the

affect of season on indicators may not be consistent.

For example, strong seasonal differences in the

relationship between ambient nutrients and land

use were observed by Johnson et al. (1997), with total

phosphorus and total nitrogen responding quite

differently. However, all of the previous studies

involving distance-weighted methods were based on

a limited number of variables collected during a

single season, averaged over multiple seasons or

applied to a response that does not vary seasonally.

Clearly, this makes it difficult to ascertain whether

the performance of spatially explicit landscape rep-

resentation methods are affected by season or vary by

indicator category.

In this study, we compare the performance of

generally applicable landscape representation meth-

ods, which are commonly used to calculate catchment

metrics. We propose a new distance-weighted method

for calculating catchment characteristics that accounts

for proximity to the stream or outlet and the level of

hydrologic activity. More specifically, we use an

extensive dataset collected in Southeast Queensland

(SEQ), Australia, to compare the ability of lumped

catchment metrics, IDW metrics, and these new

metrics to account for the variability in 13 indicators

of stream ecosystem health (see Bunn et al., 2010). We

evaluate model results to determine whether catch-

ment area affects the relationship between in-stream

indicators and spatial representation metrics. We also

compare ecologically similar indicators to determine

whether they behave alike and investigate whether

the performance of spatial representation methods

varies with season.
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Methods

Metric description

Seven land use metrics were evaluated as part of this

study, which can be divided into three general metric

types (i) lumped, (ii) inverse-distance weighted and

(iii) hydrologically active inverse-distance weighted.

The formulation for each of these metric types is

described below.

Lumped land use metrics. Lumped catchment metrics

(Fig. 1) are non-spatial and are generally represented

as an areal percentage, proportion or a mean in the

catchment:

%LU ¼

Pn

i¼1

IðkÞWi

Pn

i¼1

Wi

� 100; ð1Þ

where I (k) is an indicator function equal to 1 if a cell, i,

contains the targeted land use and 0 for other land

uses, n is the number of cells in the catchment, and Wi

is equal to 1 for every cell in the catchment.

Inverse-distance-weighted metrics. An IDW metric uses

a distance-decay function to give a stronger weight

to land use closer to a specific feature of interest,

such as the stream or the survey site. Both Euclidean

distance and flow length distance have been used to

calculate an IDW land use metric. Here, we calcu-

lated four IDW metrics by varying the distance

measure used: Euclidean distance to the stream

(iEucS), Euclidean distance to the outlet (iEucO),

flow length to the stream (iFLS) and flow length to

the outlet (iFLO) (Fig. 1). The general formula shown

in eqn 1 can also be used to calculate the IDW

metric. In this case, Wi is the inverse-distance

weighting (d + 1))1 from every cell in the catchment

to either the survey site or the stream, with

0 < Wi £ 1. Distance, d, is represented using either

Euclidean distance or flow length to either the outlet

or the stream. We chose to use (d + 1))1 because

there is some evidence that a model based on a d)1

weighting may fit the data better than a d)0.5

weighting (King et al., 2004) or a d)2 weighting

(Comelo et al., 1996). In addition, a d)1 weighting

creates a smoother weight transition near the stream

compared to a d)2 weighting. Although the weight-

ing function is not particularly smooth at the source,

this seemed reasonable since riparian land is thought

to have a stronger influence on stream condition than

areas further from the stream (Gregory et al., 1991).

Lumped iEucO iFLO HA-iFLO

iEucS iFLS HA-iFLS

High

No
Influence

Low

Lumped iEucO iFLO HA-iFLO

iEucS iFLS HA-iFLS

High

No
Influence

Low

Fig. 1 Landscape representation metrics. Lumped metrics are non-spatial and all cells are considered to have equal influence. In an

inverse-distance-weighted (IDW) metric, distance (d) may be based on Euclidean distance (iEucO, iEucS) or the flow length (iFLO,

iFLS) either to the stream outlet (iEucO, iFLO) or the stream (iEucS, iFLS). Hydrologically active inverse-distance metrics (HA-IDW)

are based on the product of the flow accumulation at each cell and the inverse flow length to the stream outlet (HA-iFLO) or the stream

(HA-iFLS). All inverse distances were based on (d + 1))1. For plotting purposes, the HA-IDW metrics were standardised to range from

0 to 1 and weights are shown on the log10 scale with the same minima and maxima. Also, the black lines in the lumped metric

represent the stream network.

4 E. E. Peterson et al.

� 2010 Blackwell Publishing Ltd, Freshwater Biology, doi:10.1111/j.1365-2427.2010.02507.x



Hydrologically active inverse-distance-weighted met-

rics. Inverse-distance weighting gives greater weight

to land use areas closest to the stream or the survey

site. However, there are also preferential flow path-

ways within a catchment where greater amounts of

overland flow may occur. As such, these land use

areas may have a greater influence on the conditions

found at the survey site (Stauffer et al., 2000). The

general form of the hydrologically active inverse-

distance-weighted (HA-IDW) metric (Fig. 1) is:

%LU ¼

Pn

i¼1

IðkÞWiFAi

Pn

i¼1

WiFAi

� 100 ð2Þ

Wi represents the inverse-distance weighting

(d + 1))1, with 0 < Wi £ 1, and d is the inverse of the

flow length from each cell, i, to either the survey site

or the stream. FAi is the flow accumulation value for

each cell, where FAi ‡ 0. Assuming that all precipita-

tion results in overland flow, the FA represents the

number of upslope cells that would be expected to

contribute flow into each downslope cell based on the

topography of the catchment. Areas with high FA

values have the potential for concentrated flow, such

as perennial or intermittent stream channels and areas

with FA values equal to 0 represent hills or catchment

boundaries. As with the IDW metrics, the HA-IDW

metric may include either the flow length to the outlet

(HA-iFLO) or the stream (HA-iFLS).

Study area and Ecosystem Health Monitoring

Programme

The SEQ region is on the eastern coast of Australia

and represents 15 major catchments with a combined

area of nearly 23 000 km2 and a peak altitude of

1360 m in the west along the Great Dividing Range

(Fig. 2; Abal, Bunn & Dennison, 2005; Bunn et al.,

2007). This is a subtropical region with mean annual

daily maximum temperatures ranging between 21 and

29 �C. The total annual rainfall ranges between 900

and 1800 mm, with the majority falling during the

warm summer season and stream flow in the region is

seasonally variable (Pusey, Arthington & Read, 1993;

Abal et al., 2005). Approximately two-thirds of the

native vegetation in the region has been cleared since

the beginning of European settlement in 1840 and the

current predominant land uses include natural bush-

land (37%, native species with variable numbers of

invasive and exotic species) and grazing (35%) (Abal

et al., 2005). Developed areas, managed forest and

plantations, and agricultural land uses are also pres-

ent in the region (6.5, 9 and 5.9%, respectively).

The SEQ freshwater Ecosystem Health Monitoring

Programme (EHMP) has been underway since 2002

(Bunn et al., 2010) and data are used to evaluate the

condition and trend in ecological health of streams

and rivers. For this study, we used 126 EHMP

freshwater survey sites (Fig. 2), where measurements

were collected biannually during the dry (austral

spring, October to November) and post-wet (austral

autumn, April to May) seasons. Survey sites were

located on reaches with a Strahler stream order

(Strahler, 1957) ‡3 and catchment sizes ranging

between 1.39 and 10 320 km2 (Table 1).

We evaluated 13 indicators of stream ecosystem

health that were measured between October 2003 and

May 2007, belonging to four general categories: fish,

invertebrates, physicochemical and nutrients. A

description of the individual indicators, including

the abbreviations that will be used hereafter, is

included in Table 2 (see also Bunn et al., 2010). We

Fig. 2 Ecological Health Monitoring Programme (EHMP) sur-

vey sites are located in Southeast Queensland, Australia. Survey

sites are distributed throughout the four EHMP regions: Coastal,

Lowland, Upland and Wallum.

Spatially explicit landscape representation methods 5

� 2010 Blackwell Publishing Ltd, Freshwater Biology, doi:10.1111/j.1365-2427.2010.02507.x



chose to use these indicators because they were

shown to respond to land use disturbance gradients

during the initial EHMP pilot study (Smith & Storey,

2001). The EHMP also collects indicators describing

ecosystem processes (metabolism), but these indica-

tors were omitted because they are less driven by

landscape characteristics and more by local site

conditions than other indicators (Bunn, Davies &

Mosisch, 1999; Mosisch, Bunn & Davies, 2001). In

addition, the EHMP does not collect ambient nutri-

ents, which are generally low across SEQ (Schmitt,

2005; Udy & Dennison, 2005), because the correlation

with land use disturbance gradients was shown to be

weak when they were tested as part of the EHMP pilot

study (Smith & Storey, 2001). The measurements

taken on each sample date represent a snapshot of

indicator condition, which may vary on a diel,

seasonal or inter-annual basis because of climatic

factors. In an effort to reduce this temporal variability,

we chose to use the median indicator value at each

site. If a site was not sampled at least twice, it was not

assigned a median value and was considered missing.

Table 1 Summary statistics describing Ecosystem Health Monitoring Programme (EHMP) catchment characteristics including area

and land use percentages for lumped Grazed and mid-dense forest (MDF). Characteristics describing mean stream width and depth at

the survey site are also included

Min. First quartile Median Mean Third quartile Max.

Area (km2) 1.39 20.41 56.10 217.51 132.11 10 323.17

% Grazed 0 16.96 43.50 44.98 72.40 99.99

% MDF 15.28 39.13 51.26 50.22 61.80 88.61

Mean width (m)* 1.15 4.17 5.65 6.75 8.25 20.16

Mean depth (m)* 0.14 0.28 0.36 0.40 0.52 0.95

*Estimates are based on data collected at 101 EHMP sites in the dry season of 2002.

Table 2 Ecological Health Monitoring Programme (EHMP) indicator categories, abbreviated indicator names and measurement units

considered as response variables in this study. An explanation of each indicator is also provided

Indicator category Indicator abbreviation Unit Indicator explanation

Fish FishOE Ratio Fish assemblage observed⁄expected (modelled)

PropAlien % % alien individuals

PONSE % % of native species expected (modelled)

Invertebrates PET Count Plecoptera-Ephemeroptera-Trichoptera: No. of

macroinvertebrate families belonging to three

ecologically sensitive orders: Plecoptera (stone-

flies), Ephemeroptera (mayflies), and Trichoptera

(caddisflies)

MacroRich Count Macroinvertebrate richness: No. of macroinverte-

brate families

SIGNAL Average score (1–10) Average macroinvertebrate sensitivity⁄tolerance

score: A score ranging between 1 (most tolerant)

and 10 (most sensitive) assigned to macroinverte-

brate families based on their tolerance⁄sensitivity to

pollution

Nutrients d15N Ratio Ratio of 15N to 14N stable isotopes within sub-

merged filamentous algae

Physicochemical Cond lS cm)1 Conductivity: Ability of water to carry an electrical

charge based on the concentration of ions present

in water

pH NA Concentration of free hydrogen ions [H+] in the

water

DORange mg L)1 Diel dissolved oxygen range

DOMin % Minimum % diel dissolved oxygen saturation

TempRange �C Diel water temperature range

TempMax �C Maximum diel water temperature
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GIS methods

The per cent ‘Grazing’ and ‘Mid-dense forest’ (MDF)

land uses in each EHMP catchment (i.e. the catchment

upstream of the EHMP survey site) were calculated

based on the seven metric types: lumped, iEucO,

iEucS, iFLO, iFLS, HA-iFLO and HA-iFLS (see Metric

description above for an explanation). Customised

scripts written in PYTHONYTHON version 2.4.1 (Van Rossum

& Drake, 2005) were used to process the input GIS

datasets and to calculate the land use metrics. A

general description of the GIS methodology is pre-

sented below.

We generated the spatial data necessary for model-

ling in a GIS using ARCRCGIS version 9.2 software

(Environmental Systems Research Institute, Inc. (ESRI),

Redlands, CA, U.S.A.). The stream data were provided

by the Moreton Bay Waterways and Catchments

Partnership (2005). The data were in vector format,

but were originally delineated based on a 20 m digital

elevation model (DEM). The stream lines were con-

verted to a raster layer with a spatial resolution of 25 m

so that it matched the other datasets used in this study.

EHMP survey sites were manually ‘snapped’ to the

appropriate stream line to ensure that a sample location

coincided with a stream. The survey sites were also

converted to a raster layer with a 25- m spatial

resolution and used to represent the catchment outlet.

The catchment boundaries for each EHMP survey site

were delineated based on a DEM with a 25- m spatial

resolution (Queensland Natural Resources and Water,

2000), the streams raster layer and the catchment outlet

raster. The DEM was hydrologically corrected and the

stream lines were ‘burned in’ 10 m prior to catchment

delineation. The DEM was also used to calculate an

eight-directional (D8) flow direction raster, which

represents the direction of flow out of each cell (ESRI).

A flow accumulation raster was then generated based

on the flow direction raster, with each cell assigned a

weighting equal to 1.

The flow accumulation raster was used to calculate

the HA-iFLO metric. However, flow accumulation

values in cells that intersected the streams were

reclassed as NoData values before they were used to

calculate the HA-iFLS metric. This was necessary

because the flow accumulation for in-stream cells

represents the terrestrial overland flow plus the in-

stream flow contribution from further up in the stream

network. We made the decision to remove the stream

cells from the analysis for the HA-iFLS metric since we

were attempting to represent hydrologically active

areas in the terrestrial environment.

We acknowledge that using a D8 algorithm, which

assigns flow from each cell into a single adjacent or

diagonal grid cell, may introduce grid bias into the

analysis (Tarboton, 1997). We chose to use this algo-

rithm because it is the most commonly used flow

direction algorithm and would probably be familiar

and available to most users. However, the metrics

described here could be calculated using alternative

flow direction, flow accumulation and flow length

algorithms, such as those provided in the Terrain

Analysis Using Digital Elevation Models toolset (Tar-

boton, 1997). We also recognise that hydrologically

correcting the DEM could potentially produce false

ridgelines that parallel the stream, although these

errors were expected to be relatively minor since the

spatial resolutions of the two datasets were similar. We

chose to ‘burn in’ the streams because we had more

confidence in the locational accuracy of the streams data

than in the flow paths produced by the coarser-scale

DEM. This ensured that information concerning land

use adjacent to the stream was as accurate as possible.

Two types of distances were generated and used to

calculate the land use metrics: Euclidean distance and

flow length distance. In the flow length function, the

flow direction raster is used to identify the flow path,

while the stream or the catchment outlet raster layers

are used to represent the destination cells. This

process resulted in four raster layers for each survey

site, which contained the Euclidean and flow length

distance between each catchment cell and the stream

or the catchment outlet. A value of 1 was added to

each cell to ensure that land uses directly adjacent to

streams did not receive a distance equal to 0.

We chose to use Grazing and MDF land use in this

study because grazing and native bushland are the

predominant land use types in SEQ (Abal et al., 2005)

and both are correlated with in-stream indicators

(Bunn et al., 1999). In addition, the relative size of land

use percentages (0–100) affects the lumped, iEucO and

iFLO metric performance (King et al., 2005). Therefore,

we also examined the distribution of per cent land use

in the 126 EHMP catchments using each of the metrics

to ensure that we were accounting for small, interme-

diate and high land use percentages. Grazing and MDF

land use met these requirements, with lumped Grazing

ranging between 0 and 99.99% and with lumped MDF
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accounting for 15.3–88.6% in the EHMP catchments

(Table 1, Fig. S1). We considered other land use types,

including urban, crop, conservation and other forested

types, but these land use percentages tended to be low

and did not adequately represent medium and large

proportions of the catchments. Hence, all analyses were

performed using Grazing and MDF land use.

We used the Queensland Land Use Mapping

Programme (QLUMP) dataset (BRS, 2002) to generate

a raster dataset where 1 indicated Grazing land use

and 0 represented other land uses present in 1999. The

QLUMP dataset was in vector format and was

resampled to create a raster dataset with a 25 m

spatial resolution. This seemed reasonable since the

minimum mapping unit was 1 hectare and the min-

imum feature width was 50 m. Grazing land use

included native, introduced and modified pastures.

The MDF raster dataset was based on the Statewide

Landcover and Trees Study Derived 2001 Foliage

Projective Cover dataset (Kuhnell et al., 1998). The

foliage projective cover (FPC) represented the per-

centage of ground area occupied by the vertical

projection of foliage and branches in 2001. The MDF

class included wooded areas with FPC values

between 30 and 70% as specified by Specht, Roe &

Boughton (1974). Note that, since MDF was based on a

different dataset than Grazing, the two categories

were not mutually exclusive. The MDF cells were

allocated a value equal to 1, while other cells were

given a value of 0. Land use cells that intersected

streams and survey sites were not removed from

either land use raster substratum when the catchment

metrics were calculated.

The Grazing and MDF land datasets represent a

snapshot in time because we did not have access to

multiple temporally variable land use datasets. We

believe that this was reasonable since we were

modelling the medians of the indicator data rather

than indicator measurements collected during sepa-

rate years. Also, the effects of land use change may

take some years to become apparent and, in some

cases, past land use has a stronger relationship with

in-stream condition than present land use (Harding

et al., 1998; Strayer et al., 2003).

Statistical methods

We questioned whether medians based on measure-

ments collected in dry and post-wet seasons could be

combined to form a single dataset and analysed. We

tested the equality of seasonal variances using the

classical Levine’s test (Levene, 1960) for continuous

indicators and the Browne–Forsythe test (Brown &

Forsythe, 1974) for counts. Then, Student’s t-tests

were used to test for equality of seasonal means (with

either equal or unequal variances), while Mann–

Whitney tests (Hollander & Wolfe, 1973) were used

to test for equality of medians for counts.

We generated scatter plots and calculated Spear-

man’s rank correlation coefficients, which were used

to compare per cent Grazing and MDF produced

using each of the metrics. The data were also assessed

to determine whether the correlation between metrics

changed with catchment area. Each site was assigned

a catchment size class based on the 33rd and 66th

percentile of the EHMP catchment area data. This

resulted in small (<29.3 km2), medium (‡29.3 and

£99.86 km2) and large (>99.86 km2) categories; corre-

lations were then assessed for each size class. Note,

hereafter these size classes will simply be referred to

as small, medium and large. Sites that did not contain

Grazing or MDF land uses in the catchment were not

included in these analyses. Metrics that were found to

be strongly correlated with other metrics were

removed from further analyses.

Three sets of general linear models were fitted to

each of the 13 indicators to compare the ability of

landscape representation metrics to explain variability

in the EHMP indicators. The first set of models

contained a response variable (median EHMP ecosys-

tem health indicator), two explanatory variables (per

cent Grazing and per cent MDF) and one explanatory

factor (EHMP region). The EHMP region was used to

account for natural variability in the indicators and

was derived by classifying streams into four regions

based on altitude, mean annual rainfall, stream order

and stream gradient (Fig. 2; Bunn et al., 2010). We

acknowledge that there was probably additional

natural variability that could not be accounted for in

this study. Models were fitted separately by metric

type (lumped, iFLO, iFLS, HA-iFLO and HA-iFLS),

meaning that each model contained a per cent

Grazing and per cent MDF variable that was calcu-

lated using a single metric, such as lumped Grazing

and lumped MDF or iFLS Grazing and iFLS MDF.

The relationship between in-stream response vari-

ables and land use metrics has been shown to vary

with catchment area (King et al., 2005); therefore, two
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additional model sets were fitted to determine

whether area had a significant effect here. The

construction of the second model set was identical

to the first (described above), except that an explan-

atory variable representing catchment area was also

included. Two additional interaction terms between

catchment area and the land use metrics (Grazing

and MDF) were included in the construction of the

third model set. This resulted in three model sets

that could be used to explore the influence of

catchment area: model set (1) no explanatory vari-

ables for catchment area, model set (2) one explan-

atory variable for catchment area and model set (3)

an explanatory variable for catchment area and

interaction terms for land use metrics (Grazing and

MDF) and catchment area. In total, 390 models were

fit to the data (13 indicators · two seasons · five

metrics · three model sets). The model residuals

were checked for normality and transformations

were applied where necessary. Outliers were re-

moved only if they were considered outliers in every

metric model.

Two analysis of variance (ANOVAANOVA) tests (Ott &

Longnecker, 2001) were used to investigate whether

catchment area affected the model results. The ANOVAANOVA

test between model sets 1 and 2 was used to factor

out the correlative relationship between catchment

area and the response variable. Then, the ANOVAANOVA test

between model sets 2 and 3 was used to evaluate

whether the ability of a land use metric to explain

variability in the response varied in relation to

catchment area. When multiple comparisons are

conducted on a dataset, it increases the probability

of a type I errors (Ott & Longnecker, 2001). Since we

compared five models for each of the seasonal

indicators (one model for each land use metric type),

a Bonferroni correction (a⁄n, where n = 5) was used

to set the overall error rate at a = 0.05. Consequently,

individual tests were performed using a significance

level of a = 0.01.

When the second ANOVAANOVA test was shown to be

significant (i.e. the ability of a land use metric to

explain variability in the response varied in relation to

catchment area), the data were split into three groups

based on catchment size class (small, medium and

large), and three separate linear models were fitted to

the data. The models were similar to model set 1; they

contained a response variable (median EHMP ecosys-

tem health indicator), two explanatory variables (per

cent Grazing and per cent MDF) and one explanatory

factor (EHMP region).

Models were compared using an information-theo-

retic approach (Burnham & Anderson, 2004) to deter-

mine which landscape representation metric

explained the most variability in the indicators. The

Corrected Akaike’s Information Criterion (AICc)

(Hurvich & Tsai, 1989) was used to estimate the

Kullback–Leibler (K-L) information loss (Kullback &

Leibler, 1951) for each model.

AICc ¼ �2 logðLðĥÞÞ þ 2K þ 2KðK þ 1Þ
n� K � 1

ð3Þ

where h is a K-length vector of regression parameters

relating each indicator to the explanatory variables,

LðĥÞ is the maximum likelihood estimate of h based on

the candidate model and the data, and K is the

number of parameters being estimated.

We rescaled the AICc values to create a relative

AICc value, Di (Burnham & Anderson, 2004):

Di ¼ AICci �AICcmin: ð4Þ

The model with the lowest AICc value was

assigned a Di equal to 0 and all other models a value

greater than 0. The Di values provide a simple statistic

that can be used to interpret the strength of evidence

for each candidate model; as the Di value increases,

the amount of support for the alternative model

decreases. In addition, Burnham & Anderson (2004)

provide simple rules of thumb that can help in their

interpretation. For example, a Di £ 2 indicates that

there is considerable support for a second model,

4 £ Di £ 7 suggests that there is substantially less

support for the second model and a Di > 10 indicates

that there is in effect no support for the second model.

The likelihood of each model given the data

(Akaike, 1981), L (gi|data), was generated by trans-

forming the rescaled AICc values given in (4):

LðgijdataÞ ¼ expð�Di=2Þ: ð5Þ

The likelihoods were then normalised and used to

calculate a weight of evidence statistic, xi, for each

model

xi ¼
eð�Di=2Þ

PR

r¼1

eð�Dr=2Þ
; ð6Þ

where R is the full set of candidate models for each

indicator (Burnham & Anderson, 2004). The xi for a
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model set sum to one and the larger the xi, the greater

the evidence that a model is the best K-L model in the

model set (Burnham & Anderson, 2004).

Results

Exploratory analysis

Student’s t-test and the Mann–Whitney tests showed

that eight of the 13 indicators had unequal means

(a = 0.05) and two indicators had unequal variances

in the dry and post-wet seasons. Interestingly, all of

the invertebrate indicators had equal means and

variances. For the fish indicators, the seasonal means

and variances for the observed versus expected fish

assemblage (FishOE) indicator were equal, while the

means for the proportion of native species expected

(PONSE) and the proportion of alien species (Prop-

Alien) indicators were unequal and the variances

equal. The only nutrient indicator, d15N (the ratio of

d15N to d14N stable isotopes within filamentous algae),

also had unequal seasonal means, but equal variances.

The physicochemical indicators showed the greatest

seasonal variation, with all of the indicators except

conductivity (Cond) having unequal means. In addi-

tion, two of the indicators (Cond and maximum

temperature – TempMax) produced unequal vari-

ances. Therefore, we decided to evaluate all of the

indicators separately for the dry and post-wet sea-

sons. Summary statistics for each of the indicators are

provided in Tables S1 & S2.

The Spearman rank correlation coefficients for the

Grazing and MDF metrics showed that all of the

metrics were somewhat correlated (Tables 3 & 4), but

that the HA-IDW metrics tended to be less correlated

with the other metrics. The correlations between the

lumped metric and the HA-IDW metrics were notice-

ably smaller than those of the lumped and pure IDW

metrics. In addition to inter-metric type correlations,

the IDW metrics were strongly correlated with each

other (Tables 3 & 4). The correlation between the

iEucO and iFLO, as well as the iEucS versus iFLS

metrics, produced correlation coefficients >0.99 for

both Grazing and MDF. There was no evidence that

any of the correlative relationships differed across

catchment size classes; these results are not shown

here. Finally, there was no consistent tendency for

Euclidean or flow length metrics to be greater or

Table 3 Spearman’s rank correlation coefficients for each of the catchment metrics using Grazing land use. The metrics include the

lumped, inverse-distance-weighted Euclidean distance to the survey site (iEucO) and the stream (iEucS), the inverse-distance-

weighted flow length to the survey site (iFLO) and the stream (iFLS), and the hydrologically active inverse-distance-weighted flow

length to the survey site (HA-iFLO) and the stream (HA-iFLS)

Metric Lumped iEucO iEucS iFLO iFLS HA-iFLO HA-iFLS

Lumped 1

iEucO 0.921 1

iEucS 0.979 0.933 1

iFLO 0.910 0.999 0.924 1

iFLS 0.978 0.934 >0.999 0.925 1

HA-iFLO 0.524 0.707 0.557 0.732 0.559 1

HA-iFLS 0.844 0.898 0.897 0.895 0.897 0.638 1

Table 4 Spearman’s correlation coefficients for each of the catchment metrics using Mid-dense forest (MDF) land use. The metrics

include the lumped, inverse-distance-weighted Euclidean distance to the survey site (iEucO) and the stream (iEucS), the inverse-

distance-weighted flow length to the survey site (iFLO) and the stream (iFLS), and the hydrologically active inverse-distance-weighted

flow length to the survey site (HA-iFLO) and the stream (HA-iFLS)

Metric Lumped iEucO iEucS iFLO iFLS HA-iFLO HA-iFLS

Lumped 1

iEucO 0.877 1

iEucS 0.877 0.837 1

iFLO 0.859 0.997 0.831 1

iFLS 0.889 0.857 0.996 0.850 1

HA-iFLO 0.158 0.397 0.254 0.445 0.250 1

HA-iFLS 0.664 0.707 0.842 0.706 0.839 0.292 1
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smaller than the other. Given that the metrics were so

strongly correlated in all catchment size classes, we

removed the iEucO and iEucS metrics from further

analysis.

The linear model residuals indicated that many of

the indicators required transformations (Tables S1 &

S2). We also considered fitting the macroinvertebrate

richness (MacroRich) and Plecoptera-Ephemeroptera-

Trichoptera (PET) indicators with a Poisson model

since they were based on counts. However, we chose

instead to fit a Gaussian model since both sets of

model residuals were normally distributed. Very few

outliers were removed; these included two dry season

conductivity measurements, one dry season pH mea-

surement and two post-wet season conductivity mea-

surements. In addition, there were missing values for

each of the indicators (Tables S1 & S2).

Three sets of models were tested using an ANOVAANOVA

so that we could separate the effects of catchment area

on the response versus the effect of catchment area on

land use and the relationship to the response. The

P-values for the ANOVAANOVA test results between model

sets 1 and 2 (ANOVAANOVA 1, Tables S3 & S4) showed that

there was little evidence of a catchment area effect in

either the post-wet or dry season. In addition, there

was no consistent evidence that a significant catch-

ment area⁄land use metric interaction occurred in

either season (ANOVAANOVA 2, Tables S3 & S4). In the post-

wet season, only 4.6% of the models contained

statistically significant interaction terms (PONSE

HA-iFLS, the d15N iFLO and d15N HA-iFLO models),

while only 7.7% of the spring models had a significant

interaction term (TempMax iFLS, TempMax HA-iFLS,

temperature range (TempRange) HA-iFLO, d15N HA-

iFLO, and d15N HA-iFLS). When there was a signif-

icant catchment area⁄land use interaction, it was not

consistent across season, with the exception of d15N.

Based on the weight of evidence from AICc, Di and

xi values, there was no one metric model type that

could be considered the K-L best model (hereafter

referred to as the ‘best model’) for all indicator

categories (Figs 3 & 4; Tables S3 & S4). Rather, we

found that the best model varied by indicator

category, indicator and season.

Fish indicators

Metric types based on flow length to the stream (iFLS

and HA-iFLS) tended to be the best models for the fish

indicators (Figs 3 & 4; Tables S3 & S4). The weight of

the evidence for an HA-iFLS metric model for FishOE

and PONSE was substantial in both dry and post-wet

seasons (xi ‡ 0.69). Although there was a significant

catchment area⁄land use interaction occurring in the

post-wet PONSE models (a = 0.003), the HA-iFLS had

more than twice the support of the next best model

(HA-iFLO) in small and medium catchments

(xi = 0.43 and 0.44, respectively). In large catchments,

the HA-iFLO model had the most support in the data

(xi = 0.37), but the HA-iFLS also had strong support

(xi = 0.31). In contrast, there was little evidence that
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the HA-iFLS model was the best for the PropAlien

indicator. In the post-wet season, the best model for

PropAlien was based on a different flow length to

stream metric (iFLS; xi = 0.56) although there was

also considerable evidence for an iFLO metric model

(xi = 0.27). In the dry season, the weight of evidence

for the lumped and iFLS metric models was similar

(xi = 0.39 and 0.37, respectively), while the iFLO

model could not be ruled out (xi = 0.20).

Invertebrate indicators

In contrast to the fish data, the best models for

invertebrate indicators appeared to be based on flow

length to the outlet (iFLO and HA-iFLO) in both dry

and post-wet seasons (Figs 3 & 4; Tables S3 & S4). In

the post-wet season, the weight of evidence for an

HA-iFLO metric model for PET and the macroinver-

tebrate sensitivity⁄tolerance score (SIGNAL) was

strong (xi = 0.88 and 0.73, respectively). However,

the evidence for the HA-iFLO and iFLO metric

models was nearly equal for MacroRich in the post-

wet season (xi = 0.40 and 0.36, respectively). In the

dry season, there was little evidence for any model

except the HA-iFLO for the MacroRich indicator

(xi = 0.90), but the iFLO and HA-iFLO models had

almost equal evidence for PET (xi = 0.53 and 0.44,

respectively). The iFLS metric model for dry season

SIGNAL was the only case where a flow length to the

stream metric performed on par with the flow length

to the outlet distance-weighted metrics (xi = 0.33).

However, the weight of evidence for the iFLO and

HA-iFLO metric models was almost equal (xi = 0.27

and 0.32, respectively). Interestingly, when we con-

sider the results for both seasons, the HA-iFLO model

could never be ruled out as the best model (Figs 3 &

4).

Physicochemical indicators

Analysis of the physicochemical indicators showed

different responses by indicator and season (Figs 3 &

4; Tables S3 & S4). There was some evidence that one

model was better than the others for three of the post-

wet indicators: Cond (Lumped, xi = 0.90), TempMax

(HA-iFLS, xi = 0.52) and dissolved oxygen range

(DORange) (HA-iFLS, xi = 0.59). In contrast, three or

more models based on different general metric types

and distance measures demonstrated significant sup-

port in the data for the pH, dissolved oxygen

minimum (DOMin) and TempRange indicators

(Fig. 3). Interestingly, none of the post-wet physico-

chemical indicator models showed evidence of a

significant catchment area⁄land use interaction.

In the dry season, five of the six indicators showed

considerable support for at least two models (Fig. 4).

The exception was the DOMin indicator, where there

was substantial support for the HA-iFLO model over

the others (xi = 0.75). Metrics based on flow length to

the outlet also performed well for the DORange

indicator; the two models with the strongest weight-

of-evidence were the HA-iFLO (xi = 0.51) and iFLO

(xi = 0.20) metric models. The two temperature

indicator models demonstrated a significant catch-

ment area⁄land use interaction effect. When Temp-

Range was analysed separately for each catchment

size class, there was strong support for a unique

metric model in each class. In small catchments, the

lumped model had the most support (xi = 0.60), while

the iFLS model was the best model in medium

catchments (xi = 0.60) and the HA-iFLO model in

large catchments (xi = 0.66). When the TempMax data

were analysed separately by catchment size class, the

lumped model clearly had the most support in the

data for small catchments (xi = 0.86). However, sep-

arating the data into size classes did not reduce the

number of competing models at all scales; three or

more models based on different general metric types

and distance measures demonstrated significant sup-

port in both medium and large catchments. Finally,

the pH indicator was the only physicochemical

indicator to show somewhat similar results across

seasons. The iFLO model was most likely to be the

best model in both dry and post-wet seasons

(xi = 0.30 and 0.53, respectively), but other metric

models based on different distance measures could

not be ruled out in either season.

When we examined the results by season, there was

some evidence of differences in the metric model

performance for physicochemical indicators. The HA-

iFLS metric had considerable support (Di £ 2) as the

best model for five of the six of the physicochemical

indicators in the post-wet season (Fig. 3; Table S3),

while HA-iFLS only had considerable support for

three of the six indicators in the dry season (Fig. 4;

Table S4). In contrast, there was considerable support

for metrics based on flow length to the outlet (iFLO

and HA-iFLO) for all six indictors during the dry
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season (Fig. 4; Table S4), but only three of six indica-

tors in the post-wet season (Fig. 3; Table S3).

Nutrient indicator

The d15N indicator models showed that there was a

significant catchment area⁄land use interaction in both

seasons and no one metric type was suitable for all

catchment size classes or seasons (Figs 3 & 4;

Tables S3 & S4). When models were fitted separately

to data from each class, there were three or more

models with considerable support for small catch-

ments in the post-wet and dry seasons, although the

lumped model was the absolute best model for each

season (post-wet xi = 0.33 and dry xi = 0.45). In the

dry season, the lumped model had also considerable

support (xi = 0.56) for medium catchments, while

both the iFLO and HA-iFLO models had considerable

support in large catchments (xi = 0.57 and xi = 0.24,

respectively). In the post-wet season, there was strong

support for an HA-iFLO model for both medium and

large catchments (xi = 0.92 and xi = 0.71, respec-

tively).

Discussion

Data and metric considerations

The spatial resolution of the stream network dataset

has been shown to have a strong influence on IDW

metrics; as the resolution of the dataset increases, the

near-stream catchment area increases and mean dis-

tance to the stream network decreases (Baker, Weller

& Jordan, 2007). In addition, the seasonal expansion

and contraction of the stream network (Junk et al.,

1989; Malard et al., 1999; Wigington et al., 2005) makes

it unlikely that a relatively coarse and static stream

resolution will accurately represent temporally dy-

namic to-stream distances (Baker et al., 2007). Inter-

estingly, the HA-IFLO and HA-IFLS metrics may be

less dependent on the spatial resolution of the stream

network dataset than IDW metrics that are based

purely on Euclidean distance or flow length. Account-

ing for the hydrological activity in addition to the

proximity to the stream (eqn 2) assigns larger weights

to preferential flow pathways that are not included in

the streams dataset, where water may have the

potential to flow at various times of the year (Fig. 1).

This characteristic may be particularly useful during

the wet season, since a greater area within the

catchment has a direct connection with the stream

network compared to the dry season (Wigington et al.,

2005). Nevertheless, a thorough investigation is

needed to determine the degree to which the HA-

IDW metrics are influenced by the spatial resolution

of the stream network dataset.

The spatial resolution of the land use data has also

been shown to affect the ability to represent riparian

areas (Gergel et al., 2007). Many of the EHMP sites

have riparian widths that are <30 m (F. Sheldon,

unpublished data) and this may have been too coarse

to provide a true representation of riparian areas,

which are heavily weighted in many of the metrics

based on inverse distance. In addition, the distance-

decay function must be carefully considered in con-

junction with the spatial resolution of the data. For

example, the sharp decline in influence dictated by the

d)1 weighting may be suitable for data with a 30 -m

spatial resolution, but might not be appropriate for

data with a 1- m resolution. Nevertheless, all of the

metrics were based on the same land use datasets and

we do not believe that this would negatively impact

one metric over another.

The results presented here represent the statistical

relationship between in-stream indicators and a major

land use (in this case Grazing or MDF). As such, it is

unclear whether the metrics would perform in a

similar manner for other land use types, such as

intensive horticulture or urban. In general, we believe

that land use processes involving the transportation

and attenuation of material via overland flow will

probably be better represented by a metric that

incorporates distance to the source, such as an IDW

(King et al., 2007) or HA-IDW metric. However, these

metrics may not perform as well when connectivity is

controlled by non-natural mechanisms, as is the case

with point-source discharges. In addition, the hydro-

logical connectivity between the catchment and the

stream may be strongly altered in urban catchments

with a high percentage of impervious substrata and

an extensive storm water drainage network. In these

situations, riparian areas may be bypassed and

distance to the source should be based on factors

other than proximity (Walsh, Fletcher & Ladson,

2005).

Prior to this study, we hypothesised that the size of

the catchment might affect the ability of metrics based

on different distance measures (i.e. Euclidean or flow
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length) to represent land use. For example, we

expected the Euclidean distance to be shorter than

the flow length to the outlet and that the difference

between the measurements would increase with

catchment area. However, we found no evidence to

suggest that it is necessary to calculate both IDW

based on Euclidean and flow length distance when a

weighting of (d + 1))1 is used. When the stream

intersects a land use cell, that cell is allocated a flow

length and a Euclidean distance weight equal to 1.

Since these cells have such a strong influence on the

final catchment land use percentage, it may explain

why the differences between IDW flow length and

Euclidean metrics were so small. Although the two

types of metrics were essentially redundant in this

study, this might not be the case if another weighting

scheme was used.

EHMP indicators and landscape representation metrics

Catchment area did not appear to affect strongly the

relationship between in-stream indicators and land

use metrics in SEQ. However, when there was a

catchment effect, lumped models tended to perform

well in small catchments, with the exception of the

post-wet season PONSE models. This was most

strongly observed in the dry season, where the

lumped model was the best model for all indicators.

As catchment size increased, the IDW and HA-IDW

(HA-iFLO) models tended to outperform the lumped

models. This is not surprising, since all land use

within a small catchment would be expected to be in

close proximity to a survey site and would probably

affect the conditions found there. However, these

results contradict those of King et al. (2005), who

found that the per cent cropland derived using an

iEucO metric explained more variability in nitrate-N

concentrations than a lumped metric in small catch-

ments (<6 km2), but that models based on lumped

cropland out-performed iEucO models in medium (6–

26 km2) and large (>26 km2) catchments.

There were a number of differences in the study

performed by King et al. (2005) that may account for

this apparent inconsistency in the results. First, we did

not test ambient nutrients because they do not have a

strong correlation with land use gradients in SEQ

(Smith & Storey, 2001). In addition, cropland was not

included in any of the models since it does not

account for a large percentage of land use in SEQ. As

such, it is impossible to make a direct comparison

between the two studies. Second, catchment size

classes were based on the 33rd and 66th percentiles

of the data in both studies, which ensured that each

size class retained enough observations to fit a

balanced set of models. Although the EHMP catch-

ments appear to cover the full range of catchment size

classes used in King et al. (2005), the EHMP catch-

ments tended to be much larger (Table 1), with a

maximum of 10 320 km2. This may have disadvan-

taged the lumped models, which allocate equal

weights to all land use areas, regardless of proxim-

ity to the stream or survey site. Finally, and possibly

most importantly, our study was undertaken in a

subtropical environment (Pusey et al., 1993; Abal

et al., 2005). Clearly, variability in rainfall and runoff

would be substantially different than the conditions

found in Maryland, U.S.A., and this may have

contributed to the disparity in the results. Despite

these differences, both studies show that patterns in

metric model performance related to catchment size

may occur; though they were relatively uncommon

for most indicators in the EHMP dataset. Our study

also shows that the catchment size effect has the

potential to vary by season since it was only present in

the models for TempMax, TempRange and PONSE

during a single season.

There was more seasonal variation observed in the

models for the fish indicators than for the invertebrate

indicators, but less than the physicochemical indica-

tors. Our results suggest that metric types based on

flow length to the stream (iFLS and HA-iFLS) may be

more appropriate for the fish indicators than other

metric types, regardless of season, and similar results

have been found in other studies (see King et al., 2004;

Van Sickle & Johnson, 2008). As we mentioned

previously, the area of influence represented by a

metric based on flow length to the stream makes sense

from an ecological perspective; fish distribution gen-

erally reflects multi-scale environmental conditions

from the landscape, to the riparian zone and in-stream

habitat (Gregory et al., 1991; Pusey & Arthington,

2003; Allan, 2004; Kennard et al., 2006a) and includes

the temporal aspects of broad-scale habitat availabil-

ity, configuration and connectivity (Fausch et al., 2002;

Isaak et al., 2007; Stewart-Koster et al., 2007).

The two modelled fish indicators, FishOE and

PONSE, demonstrated less seasonal variability than

the PropAlien indicator and seemed to be more

14 E. E. Peterson et al.

� 2010 Blackwell Publishing Ltd, Freshwater Biology, doi:10.1111/j.1365-2427.2010.02507.x



strongly influenced by hydrologically-active areas.

The multivariate predictive models used to generate

the FishOE and PONSE indicators contained explan-

atory variables, such as mean wetted width and

maximum water depth, which would be expected to

reduce seasonality in the indicators (see Kennard

et al., 2006a,b for a detailed description of the methods

and explanatory variables used). However, the model

inputs were not spatially explicit and did not specif-

ically represent hydrologically active areas. Therefore,

we do not believe that the strong performance of the

HA-iFLS metric is a result of the model inputs. This

metric allocates a relatively strong weighting to

potential flow pathways, such as intermittent

channels, compared to the iFLS metric. If the magni-

tude and duration of flow is adequate, fish may be

using these channels seasonally. The differences

observed in the PropAlien indicator results could be

due in part to the nature of alien fish distribution,

with their presence possibly reflecting conditions or

events unrelated to land use. For example, the

presence of alien fish may simply reflect their physical

introduction or the existence of weirs and culverts

affecting dispersal, which were not accounted for in

our data (Kennard et al., 2005).

In comparison, the lack of seasonality in the

invertebrate indicators was at first surprising since

invertebrate counts elsewhere respond to fine-scale

conditions that are seasonally variable (Wood & Petts,

1994; Cox & Rutherford, 2000; Mykra, Heino &

Muotka, 2004). This may be the result of a prolonged

drought and a reduction in catchment runoff, which

occurred during this time period. In addition, the

invertebrate indicators used in this study were based

on assemblage indices (MacroRich and PET) and

sensitivity scores (SIGNAL) rather than individual

counts (Table 2), which may be less sensitive to

seasonal changes (Chessman, 1995). In contrast to fish

indicators, metrics based on distance to the stream

outlet clearly outperformed other metric types for

invertebrates in all but one case and could never be

ruled out as the best model. These results are

somewhat similar to those of King et al. (2005), who

found that an iEucO developed land metric explained

more variability in invertebrate assemblage than a

lumped metric. In this study, the HA-iFLO model

always had considerable support in the data, while

the iFLO metric only had considerable support for one

of three indicators in the post-wet season and two of

the three indicators in the dry season. This suggests

that land use in hydrologically active areas directly

adjacent to the survey site may have a disproportion-

ate influence on invertebrate indicators.

The superior performance of land use metrics based

on distance to the stream outlet is somewhat intuitive.

Invertebrates generally have a shorter lifespan and a

more limited ability to migrate than fish (Rosenberg &

Resh, 1993); though some species can escape undesir-

able conditions via upstream flight or downstream

drift (Allan, 1995). Large-scale landscape conditions

do affect invertebrates, but it is thought to be an

indirect relationship through their influence on local-

scale conditions (Biggs et al., 1990) and the hydrologic

response from the catchment (Allan, 2004). As a

result, the local conditions directly adjacent to the

outlet that are also located within hydrologically

active areas appear to have the strongest influence

on invertebrate indicators. Since the HA-iFLO metric

model could never be ruled out as the best model, we

suggest using it to calculate land use characteristics

for invertebrate indicators based on assemblage indi-

ces, regardless of season.

There was more seasonal variation in the physico-

chemical indicator values and model performance

than in any other indicator category. To our knowl-

edge, no other study has used distance-weighted

metrics to investigate the effect of land use on

freshwater physicochemical indicators during a wet

or post-wet season (but see Comelo et al., 1996 for an

example from an estuarine environment). In this

study, the HA-iFLS metric model was regularly a

candidate for the best metric in the post-wet season

(Fig. 3), while metrics based on flow length to the

outlet (iFLO and HA-iFLO) had considerable support

as the best model in the dry season (Fig. 4). In addition,

metric model performance tended to vary by catch-

ment area in the dry season (TempMax and Temp-

Range) compared to the post-wet season. All this

suggests a seasonal shift in influence from the broader

landscape-scale in the post-wet to local-scale condi-

tions during the dry season, which is probably the

result of temporally variable lateral and longitudinal

connectivity in the stream network. As such, a metric

giving greater influence to hydrologically active areas

in close proximity to the stream may be more suitable

during the post-wet season, while the areas directly

adjacent to the survey site may be more suitable for

physicochemical indicators during the dry season.
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Interestingly, there was strong evidence that the

lumped model outperformed other metric types in

post-wet conductivity data. As we have mentioned

previously, the increase in both lateral and longitudi-

nal connectivity occurring in the post-wet season is

likely to strengthen the relationship between land-

scape-scale and in-stream conditions (Johnson et al.,

1997; Robertson et al., 1999; Olivie-Lauquet et al., 2001;

Pan et al., 2004). In-stream conductivity is influenced

by vegetation type and catchment condition (Kawa-

kami, Honoki & Yasuda, 2001) and all locations within

a catchment may contribute to in-stream conductivity

values when there is a high degree of connectivity. In

the dry season, the reduction in lateral and longitu-

dinal connectivity (Junk et al., 1989; Malard et al.,

1999; Wigington et al., 2005) causes constriction of the

stream network and increases the influence of local-

scale conditions (Fellows et al., 2009). Reductions in

lateral connectivity have also been shown to reduce

the impact of land use on in-stream condition (John-

son et al., 1997; Pan et al., 2004). This may explain why

the lumped model had considerable support for both

the pH and conductivity indicators in the post-wet

season, when a high degree of connectivity would be

expected, but not in the dry season.

Clearly, our conclusions concerning the physico-

chemical indicators are much more tentative than

those of the fish and invertebrate indicators. Multiple

models for physicochemical indicators tended to have

substantial support in the data. As such, we do not

recommend a single metric over another, but suggest

thoroughly evaluating each indicator, identifying

particularly influential processes and then selecting

the most appropriate land use metric. It may also be

worthwhile to compare multiple land use metrics to

determine which metric(s) is most suitable for a

particular physicochemical indicator.

Catchment area appeared to have a significant

influence on the relationship between d15N and land

use in both seasons. In small catchments, the lumped

metric model always explained the most variability in

d15N; though numerous IDW and HA-IDW models

also performed well. These results are not unexpected

since a large proportion of land is found in close

proximity to the survey site in small catchments

compared with large; these areas are probably to have

a strong influence on in-stream conditions in either

season. In contrast, we observed seasonal differences

in metric model performance in medium catchments,

with the lumped metric performing well in the post-

wet season and the HA-iFLO performing well in the

dry. These differences are also probably the result of

seasonal differences in lateral connectivity between

the catchment and the stream (Junk et al., 1989;

Malard et al., 1999; Wigington et al., 2005); when

lateral connectivity is high in the post-wet season, a

greater proportion of the catchment would be

expected to have an influence on in-stream conditions

than in the dry season. The results for large

catchments also support this conclusion, since iFLO

and HA-iFLO metrics were the only models with

considerable support during both seasons. The iFLO

and HA-iFLO metrics allocate the largest weighting to

the area directly adjacent to the survey site and this

would essentially shrink the area of influence in a

large catchment. The superior performance of these

metrics in large catchments may mean that many land

use areas are simply too far away from the survey site

to have a direct effect on d15N, even when those areas

are directly adjacent to the stream.

The d15N indicator represents the ratio of d15N to

d14N stable isotopes within filamentous algae col-

lected from each site (Udy et al., 2006). As such, we

would not expect the same strong seasonal fluctua-

tions in d15N, which have been observed in ambient

nutrient indicators (Johnson et al., 1997). Given that

we evaluated only one nutrient indicator, d15N, which

behaves very differently than ambient nutrient indi-

cators evaluated in similar studies (King et al., 2005;

Poor et al., 2008), we cannot draw general conclusions

about the relationship of nutrient indicators to spatial

representation metrics here.

Management implications

Lumped metrics are used in many of the predictive

models currently applied in freshwater and estuarine

ecology (Hale, Paul & Heltshe, 2004; Kennard et al.,

2005; Peterson et al., 2006). The models are used to

evaluate an in-stream response to disturbance gradi-

ents (Johnson et al., 1997; Strayer et al., 2003; Norris

et al., 2007), to perform environmental classifications

(Snelder & Biggs, 2002; Wardrop et al., 2005), as part

of environmental assessments (Wickham et al., 1999;

Jones et al., 2001) and to make recommendations

about land use thresholds that may cause in-stream

degradation (Bunn & Davies, 2000; Wang et al., 2001).

In addition, lumped metrics may be used to target
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conservation or restoration efforts (Linke et al., 2006).

The methods presented here are extremely general;

the product is represented as a percentage, which

means that spatially explicit metrics can be substi-

tuted for lumped metrics without altering the model

form. As such, these metrics will generally be

expected to improve the predictive ability of many

models currently in use.

One of the disadvantages of a lumped representa-

tion method is the difficulty of establishing a

causal relationship between catchment processes and

in-stream condition (King et al., 2005). The cause-

and-effect linkage is generally established using a

process-based model, where the exchange of material

or energy is mathematically modelled based on

ecological knowledge and understanding. Neverthe-

less, process-based models are typically not generally

applicable in practice; they may be unreliable when

applied in dissimilar regions, may have considerable

data requirements, tend to be complex and may be

computationally intensive (Sivakumar, 2008). The

spatially explicit landscape representation approaches

presented here provide more information about a

causal relationship than a non-spatial lumped ap-

proach, with the added advantage that they are

generally applicable and can be easily implemented

without regard to regional differences. The distance-

decay function and hydrologically active weighting

scheme are simplistic representations of mechanistic

processes, attenuation rates and transport pathways

between catchment and stream (King et al., 2007; Van

Sickle & Johnson, 2008). Comparing the results of

different weighting schemes and distance measures

allows areas with a stronger influence on in-stream

conditions to be identified, which provides clues

about which processes contribute to the correlation.

This is useful because we cannot return entire catch-

ments to pristine condition to improve ecological

health (Allan, 2004). Rather, a comparison of different

metric models could be used to identify the spatial

location of particularly influential areas, which could

be further investigated and potentially targeted for

restoration.

Our results add to the growing evidence that

spatially explicit landscape representations explain

more variability in freshwater and estuarine indicators

than lumped metrics, regardless of indicator category

or season. That being said, there does not appear to be

one metric that is most suitable for all indicators types.

However, some patterns did emerge, which allowed us

to make two general recommendations: (i) for fish

indicators, metrics based on inverse distance to the

stream tend to perform better, regardless of season and

(ii) metrics based on inverse distance to the outlet

appear to be more suitable for invertebrates, regardless

of season. Seasonal patterns may be less evident in

modelled indicators (depending on the model inputs)

and indicators that represent assemblages rather than

individuals. As such, indicators from a single category,

such as fish or invertebrates, may be strongly correlated

with different metric types. This may also be true for

other indicators from the same category, such as d15N

and ambient nutrients, although we were unable to

make that comparison. Therefore, the methods used

to calculate the indicators and the processes likely to

affect them must be taken into consideration before a

landscape representation metric is selected for further

use. The conclusions that we are able to draw for the

physicochemical indicators are much more tentative,

but there may be a seasonal pattern in metric perfor-

mance associated with a hydrologic flushing effect.

We believe that these metrics are a step towards a

more spatially explicit landscape representation. Yet

they remain simple representations, leaving plenty of

opportunities for future research. For example, it is

unclear whether the spatial relationships observed

here hold true for other land use types, such as

urban or agricultural areas, and whether different

processes would be better represented by another

weighting scheme or distance measure. Also, the

metrics used here simply represent influence as a

function of distance, with the possibility of incorpo-

rating preferential flow pathways. Yet we know that

the context of the land use (i.e. what lies between a

particular land use cell and the stream) is extremely

important (Turner et al., 2001). Hence, the challenge

is to develop more effective landscape representation

methods that are generally applicable so that they

may be applied to a range of land use types across

diverse regions.
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